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Abstract A system of mean field rate equations is

employed for describing the kinetics of solid-solid phase

separation within the immiscibility gap of binary alloys.

The system allows us to study the time evolution of both

supersaturation and diffusion length of the components in

the metastable phase. It is shown that in the case of

simultaneous nucleation the system of differential equa-

tions leads to a simple formula for the characteristic time of

the transformation in terms of material parameters and

initial supersaturation. The nucleation rate is computed on

the basis of the classical nucleation theory and the alloy is

assumed to behave as a regular solution. It turns out that for

low values of the initial supersaturation the nucleation

process can be considered as simultaneous. It is also found

that thermally activated nucleation takes place for super-

saturation values lower than about 0.21. The assumption of

a concentration-independent diffusion coefficient and the

effect of nucleus curvature on interface composition have

been analyzed and discussed.

Introduction

Phase separation is an important topic in materials science

since it usually takes place during the production cycle of

materials. In fact, the properties of the product depend

on its microstructure which, in turn, is affected by the

kinetics of the phase transformation. Since the celebrated

theoretical works by Kolmogorov Johonson Mehl and

Avrami (KJMA) [1–4] concerning the kinetics of phase

transitions ruled by nucleation and growth, and the work by

Zener on the diffusional growth of spherical nuclei [5],

several studies have been performed aimed at a compre-

hensive study of phase transformations occurring in multi-

component systems ([6–11] and references therein). The

kinetics of the nucleus growth, as formulated by Zener, is

usually coupled with the KJMA approach resulting in an

equation for the time evolution of the volumetric fraction

of the transformed phase. It is worth stressing that kinetics

other than the KJMA theory have been formulated to

account for the non-random distribution of nuclei [12, 13],

the shielding effect due to the anisotropic growth [14, 15],

and the parabolic growth law [16, 17]. Computer simula-

tions have also been employed for investigating the

microstructure of the system, namely the nucleation density

and the particle size distribution function [18–21]. In this

context it is worth mentioning the works on the primary

crystallization of undercooled liquid where the equation

originally proposed in Ref. [5] has been employed by

considering the time dependent concentration of the parent

phase [21, 22]. The non-homogeneous concentration of the

diffusing species is shown to lead to non-random nucle-

ation and to ‘‘soft’’ impingement among clusters. Both

effects have been studied in detail in Ref. [21].

Liquid–liquid transformations have recently been ana-

lyzed by Zhao et al. [23, 24] by using a mean field

approach for describing the particle size distribution

function and the nucleation rate under non-isothermal

conditions. In these works, the steady state concentration

profile around each nucleus is computed according to Ref.

[25] by means of the diffusion equation proposed in Ref.

[26]. Although this approach exploits a steady state

approximation, it permits one to study the evolution of the
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supersaturation during the transition. This modeling entails

a time dependent diffusion length that can be determined,

together with the nucleus size, by solving a system of mean

field rate equations [25]. The system turns out to be par-

ticularly manageable in the simultaneous nucleation case.

The present contribution is aimed at modeling solid–

solid phase transition kinetics, ruled by nucleation and

growth, occurring in the immiscibility gap of two-compo-

nent alloys. An important system that fits within this

category is, for example, the Fe–C alloy where a phase

separation can occur that is ruled by the nucleation and

growth of ferrite. In this system, the growth is linked to the

diffusion of C atoms within the solid matrix. This process

has been recognized to be of relevance in materials science

and technology, also in connection with the so-called

‘‘metal-dusting’’ phenomenon [27–29].

In the present work, the kinetics developed in Ref. [25]

will be solved, for simultaneous nucleation, and the scaling

properties of both diffusion length and duration of the

transformation investigated in terms of material parame-

ters. This analysis leads to a quite manageable expression

that could be useful in dealing with experimental data.

Particular attention will be devoted to the nucleation rate as

a function of the fraction of the transformed phase. To this

end the thermodynamics of the alloy is described in the

framework of the regular solution model with pair-wise

interactions. This analysis is also relevant in order to

establish whether or not the nucleation process can be

considered as simultaneous.

Results and discussion

Simultaneous nucleation

In this section, we discuss phase transformation in binary

alloys governed by simultaneous nucleation, also referred

to as site saturation, where all nuclei start growing at the

same time and with the same growth law. Nucleus growth

is considered to proceed by atom diffusion in the meta-

stable solution where an equilibrium nucleus/solution

interface is assumed [30]. By neglecting any surface effect

on the concentration of the species at the interface (the

Gibbs–Thomson effect will be discussed in section ‘‘Effect

of the nucleus curvature on interface composition’’), the

composition of the interface can be directly related to the

phase diagram. A schematic representation of the concen-

tration profiles of the A and B components in the proximity

of a nucleus and far from it into the parent phase, cA
(0) and

cB
(0), is reported in Fig. 1a. The stable phases are designated

as a and b and both nuclei of these two phases have been

represented in the figure. Panel (b) shows the typical

behavior of the molar-free energy of the alloy as a function

of composition. The mole fraction of the A component,

which is here chosen as the composition variable, is pro-

portional to the concentration according to x
ðiÞ
A ¼

c
ðiÞ
A

qi
, where

qi is the density of the phase (i = a, b).

As far as the growth law of the nucleus is concerned, it

is usually formulated using the mean field theory. For an

interface with infinite mobility [30], the growth rate of a

spherical nucleus of the a-phase reads [31]

dRa

dt
¼ DA

c
ðaÞ
A � c

ðbÞ
A

ocA

or

� �
r¼Ra

¼ DA
ra

ya
ð1aÞ

where DA is the diffusion coefficient of A; ra ¼ c
ð0Þ
A
�c
ðbÞ
A

c
ðaÞ
A
�c
ðbÞ
A

the

supersaturation, and ya a characteristic distance defined by

the last equality in Eq. 1a. In a like manner, for the

formation of b-phase nuclei, one gets

Fig. 1 a Pictorial view of the concentration profile of the two

components (designated as A and B) of the alloy. The two stable

phases, denoted as a and b, are shown in grey where an equilibrium

nucleus/solution interface is considered. cA
(0) and cB

(0) are the concen-

tration of the components far from the interface in the parent phase,

cA
(a) and cB

(b) the concentration of the two coexisting phases at

equilibrium. b Isothermal free energy-composition diagram. In the

graph the composition variable is the mole fraction of A, xA
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dRb

dt
¼ DA

rb

yb
; ð1bÞ

with rb = 1 - ra. It is worth stressing that for yi = Ri

Eqs. 1a and 1b give Ri = (2DArit)
1/2 where the

supersaturation is taken as constant. This last condition

has been relaxed in Refs. [21, 22] where Eq. 1 is solved for

a time dependent supersaturation, that is raðtÞ ¼ c
ð0Þ
A
ðtÞ�c

ðbÞ
A

c
ðaÞ
A
�c
ðbÞ
A

,

and at yi = Ri. As far as we know, a mean field approach to

the phase transition dealing with characteristic distance (y)

and supersaturation (r), both dependent on time, was first

discussed in Ref. [25] by employing the diffusion equation,

ocA

ot
¼ DA r2cA �

cA � c
ðbÞ
A

k2
a

" #
; ð2aÞ

where ka is the characteristic diffusion length and the

growth of the a-phase was assumed. Specifically, the last

term in Eq. 2a accounts for the depletion of the A atoms

this being caused by the growing of the other nuclei located

at r = 0. Integration of Eq. 2a under steady state

conditions gives the characteristic distance

yi ¼
kiRi

ki þ Ri
; ð2bÞ

which yields yi = Ri for ki � Ri.

As far as the nucleus growth is concerned, we underline

that it is due to the diffusion of both components in the

parent phase. The rate of nucleus growth, _Ra, has been

expressed in terms of composition and diffusion coeffi-

cient of one of the two species, that is component A. In

fact, the transport of the two components is not indepen-

dent of each other for, in the diffusion zone, the whole

flux of matter is usually assumed to vanish. In the case of

a diffusion mechanism mediated by lattice vacancies, this

condition ensures that the net flux of vacancy is nil.

Furthermore, the mass transport equation (Eq. 2a) holds

either for an ideal behavior of the solid solution or for an

activity coefficient independent of composition. The

validity of this approximation, together with the assump-

tion that no effect is brought about by the curvature of the

phase boundary, will be discussed in sections ‘‘The ther-

modynamic factor’’ and ‘‘Effect of the nucleus curvature

on interface composition’’ in the framework of the regular

solution model.

In order to solve the kinetics of the phase transforma-

tion, Eq. 1 has to be coupled with two more equations

representing, respectively, the mass balance and the

changing rate of the supersaturation. In particular, the lever

rule gives rise to the expression [22, 25]

rað0Þ ¼ raðtÞ½1� XaðtÞ � XbðtÞ� þ XaðtÞ; ð3Þ

where Xi(t) is the fraction of transformed phase (i = a, b),

and the density has been assumed to be the same for all the

phases.

The connection between the volumetric fraction of the

new phase and the nucleus radius is usually established by

means of the KJMA theory. Owing to its analytical sim-

plicity, this model has been receiving considerable

attention from experimentalists for interpreting kinetic data

([11] and references therein). The validity of the KJMA

model in describing phase transformation ruled by diffu-

sion-controlled growth has been analyzed in detail in Ref.

[21]. It is shown that owing to the concentration field

around the growing nuclei, the spatial distribution of nuclei

is non-random, leading to deviation from the KJMA

kinetics. In the primary crystallization, this effect has been

shown to be negligible relative to the overall kinetics [32].

In the following, we consider the growth of the a-phase

only, a hypothesis we will discuss in more detail in the next

section, and the KJMA model is employed to estimate the

fraction of the transformed phase. Moreover, the nucleation

process is considered to be simultaneous, namely nuclei

begin to grow at the same time with the same growth law.

By defining the length scale d ¼ N�1=3, with N being the

nucleation density, and the time scale ~s ¼ d
2
=DA, the

system reads

dq
ds ¼ r 1

gþ
1
q

h i
4(a)

dr
ds ¼ �

r
g2 4(b)

q ¼ 3
4p ln

1�r
1�rð0Þ

� �1=3

; 4(c)

8>>>>>>><
>>>>>>>:

where s ¼ t=~s; g ¼ k=d and q ¼ R=d are the non-

dimensional quantities and the unnecessary index labeling

the phase has been omitted. Numerical integration of the

system gives the q(s), r(s), and g(s) kinetics and,

eventually, the fraction of the transformed phase through

Eq. 3

XðsÞ ¼ rð0Þ � rðsÞ
1� rðsÞ ; ð5Þ

where X(?) = X? = r(0). Notably, the system of rate

equations (Eq. 4) permits us to evaluate, analytically, the

ratio between the nucleus radius and the diffusion length as

a function of supersaturation

q
g
¼ 3

2
ð1�rÞ ln

1�r
1�r0

� �
1þ 1þ 4

3ð1�rÞln 1�r
1�r0

 !1=2
2
4

3
5;
ð6Þ

where r0 = r(0) is the initial supersaturation. The behav-

ior of the function g/q versus r/r0 is displayed in Fig. 2 for
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several values of the initial supersaturation. These curves

show that the aforementioned assumption, k = R, is sat-

isfied during the whole evolution, provided the initial value

of the supersaturation is low. Equation 6, together with Eq.

4c, also gives the g(r) kinetics that can be used in order to

verify the validity of Ham’s equation, namely r
r0
¼ e�Ksn

where K and n are constants [33, 34]. By inserting these

kinetics into the rate equation for the supersaturation (Eq.

4b), the diffusion length is found to scale according to the

power law g�1 / ðln r0

r Þ
ðn�1Þ=2n

. The validity of this

assumption has been checked in Fig. 3 where g-1 has been

plotted as a function of ln r0

r on double logarithmic scale

and for several values of r0. It is found that Ham’s equation

is satisfied for low values of the initial supersaturation. It is

worth noticing that in Fig. 3 the fraction of transformed

phase can be easily related to r0 ¼ r
r0

by means of Eq. 5

according to X
X1
¼ 1�r0

1�r0r0
. In the limit r0 � 1; X

X1
ffi 1� r0.

The kinetics of the transformed volume are displayed in

Fig. 4A, as a function of the dimensionless time s, and

exhibit the sigmoidal-shape typical of phase transitions

occurring via nucleation and growth. From these kinetics it is

possible to give an estimate of the duration of the transition,

sf, by assuming the transformation to be completed, say, for
X

X1
¼ 0:95. The behavior of sf with the initial value of the

supersaturation is found to be well described, in the range

0.04 \r0 \ 0.7, by a power law as shown in Fig. 4B.

Therefore, this master plot implies the following scaling of

the actual time of the transition,
Fig. 2 Behavior of the ratio between the diffusion length and the

nucleus radius as a function of r/r0, for several values of the initial

supersaturation r0: (a) r0 = 0.05, (b) r0 = 0.2, (c) r0 = 0.5, and (d)

r0 = 0.7. Computations refer to the simultaneous nucleation case

Fig. 3 Check of the validity of Ham’s equation in the case of

simultaneous nucleation. In the graph g-1 has been plotted as a

function of ln r0

r on double logarithmic scale. Curve (a) r0 = 0.05, (b)

r0 = 0.2, (c) r0 = 0.5, and (d) r0 = 0.7. Ham’s assumption implies a

linear behavior of these plots

Fig. 4 A Kinetics of phase transformation in the case of simulta-

neous nucleation for several values of the initial supersaturation: (a)

r0 = 0.05, (b) r0 = 0.2, (c) r0 = 0.3, (d) r0 = 0.5, and (e) r0 = 0.7.

X is the volumetric fraction of the transformed phase and s the

dimensionless time. B Scaling of the duration of the transition as a

function of the initial supersaturation of the solid solution
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tf ¼
C

rm
0 N2=3DA

; ð7Þ

where m % 0.6 is the power exponent as derived from

Fig. 4B and C ffi 0:17.

As far as the concentration profile around a growing

nucleus is concerned, it has been computed through Eq. 2

according to [25]

cð0Þ � cðr0Þ
cð0Þ � cðbÞ

¼ q
r0

e q�r0ð Þ=g; ð8Þ

where r0 ¼ r=d� q. The behavior of Eq. 8 is illustrated in

Fig. 5 for several values of the supersaturation and, there-

fore, of the nucleus radius. The dimensionless radius and the

diffusion length are estimated through Eqs. 4c and 6 for both

r/r0 = 0.99 and r/r0 = 0.5 and for several figures of r0. In

this context one also observes that since Eq. 3 assumes the

concentration to be uniform throughout the sample, it has to

be regarded as an approximation, which is more reliable the

shorter the range of the concentration field [21].

Strictly speaking, the simultaneous nucleation case is an

approximate modeling of the actual nucleation process.

Nevertheless, this approach has the merit of permitting a

straightforward solution of the kinetics in terms of the more

general expression of the characteristic length (Eq. 2b) and

allows one to check the validity of the identity k = R.

Moreover, it gives a simple and direct interpretation of the

time needed to complete the transformation in terms of

measurable quantities such as supersaturation, diffusion

coefficient, and nucleation density (Eq. 7). In the next

section, an analysis is presented which is useful in defining

the conditions which validate the mean field approach

discussed so far.

Ham’s equation can be employed to evaluate the size of

the nucleus, at the end of the phase transition, in the case of

low supersaturation where the equation has been shown to

hold. Since under this circumstance q � g, Eq. 4a gives

q2 ¼ 2r0

nK1�a

R w

0
w�ae�wdw where w ¼ ln r0

r and a ¼ n�1
n .

Consequently, the maximum size of the cluster is

q2
max ¼ 2r0

nK1�a Cð1� aÞ, where C(x) is the gamma function.

The model discussed so far can be useful for interpreting

experimental data on phase separation in binary systems.

Specifically, for a given initial composition of the alloy,

xA
(0), one considers a sudden temperature change that brings

the alloy into the immiscibility gap, i.e. from a one-phase

to a two-phase region of the phase diagram. In this case,

provided that heat transfer is fast compared with the

kinetics of the phase transition, at the end of such a tem-

perature jump the system is still a single phase, namely the

metastable solution, with initial composition xA
(0) (Fig. 1b).

The model applies to the isothermal phase separation at this

final temperature. On the other hand, the metastable phase

within the immiscibility gap can be reached, at a given

temperature, through variation in composition, as is

thought to occur in metal dusting.

Experimental techniques do exist that allow one to

measure the X(t) kinetics. These techniques are based, for

example, on calorimetric and spectroscopic measurements

performed during the transition. The model kinetics pre-

sented here highlight the conditions under which

experimental data can be safely analyzed in the framework

of Ham’s law, that is by using Avrami’s plot. In this case the

fitting parameters, K and n, can be linked to the activation

energy of the transition and to the growth law of the cluster,

respectively, as discussed in detail in Refs. [11, 25]. As an

application of the scaling law Eq. 7, let us consider the

metal dusting caused by the catalytic reduction of hydro-

carbon on the iron surface. As discussed in Refs. [27–29],

metal dusting is driven by the phase separation of a meta-

stable Fe–C solid solution in the presence of graphite. The

transition is considered to proceed via C-phase nucleation

and growth [27, 28]. Furthermore, kinetic measurements

have been performed which give the rate constant of the

whole process, KM, and its temperature dependence. For the

Fe–C system an activation energy of 200 kJ/mol has been

reported [27, 28]. Therefore, in an attempt to interpret the

temperature dependence of KM on the basis of the present

approach, we identify KM
-1 with the length of the transi-

tion, tf. Accordingly, one infers that 2
3
DH#

N þ DH#
D ffi

200 kJ/mol, where DHN
# and DHD

# are the activation energies

for nucleation and diffusion, respectively.

Nucleation rate

This section is devoted to modeling the steady state nucle-

ation rate in binary alloys as a function of supersaturation.

Fig. 5 Concentration field around a growing nucleus. The behavior

of the function vðr0Þ ¼ cð0Þ�cðr0Þ
cð0Þ�cðbÞ

is displayed for r/r0 = 0.99 and

r/r0 = 0.5, where r0 ¼ r=d. (Solid lines) r0 = 0.05, (long dashed
lines) r0 = 0.1, (dashed lines) r0 = 0.2
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This computation is useful in order to check the validity of

the two hypothesis commonly employed to deal with this

type of phase transition: simultaneous and progressive

nucleation. In the former case, the nucleation rate is a Dirac

delta function; in the latter, a constant. To this purpose, a

thermodynamic approach is developed that is based on the

theory of regular solution with pair-wise interactions. The

computation pathway implies the evaluation of the free

energy change for nucleus formation, which quantity enters

the classical theory of nucleation.

According to the theory of regular solution, the molar

Gibbs free energy of formation of the alloy is

bDG ¼ bx
1

4
� n2

A

� �
þ 1

2
þ nA

� �
ln

1

2
þ nA

� �

þ 1

2
� nA

� �
ln

1

2
� nA

� �
; ð9Þ

where b = 1/kT, k is Boltzmann’s constant, T the absolute

temperature, and nA ¼ xA � 1
2
, with xA being the mole

fraction of the A component that is the composition

variable. In Eq. 9, x is related to the excess enthalpy of the

alloy that is derived, in terms of pair interactions, according

to x ¼
P

n zn eAB � 1
2
ðeAA þ eBBÞ

� �
n
, where the sum runs

over the coordination shells, zn is the coordination number,

and eij the pair interaction energy. From Eq. 9 it stems that

DG is an even function of nA. Also, by denoting with

n = nA
(a) (assumed here to be greater than zero) the

composition of the a-phase and by setting the first

derivative of Eq. 9 equal to zero, one gets

bx ¼ 1

2n
ln

1þ 2n
1� 2n

; ð10Þ

where bx[ 2 holds, since the two-phase region is ther-

modynamically stable (0 \ n\ 1/2). From Eq. 10 it turns

out that the n parameter completely characterizes the

energetics of the system.

The behavior of Eq. 9 is displayed in Fig. 6 as dashed

line (right scale). In particular, the two inflection points are

located at nA ¼ �nA;F ¼ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4n

ln1þ2n
1�2n

r
which define the

region of the spinodal decomposition (-nA,F \ nA \ nA,F).

Within the spinodal, compositional fluctuations—of

wavelength longer than the critical one—grow in ampli-

tude as a function of time yielding to the final product

phase. Therefore, the thermally activated process of

nucleation does occur in the intervals of composition nA,F

\ nA \ n and -n\ nA \ -nA,F. Hereafter the modeling

refers to these compositional range.

The chemical potential of the components are estimated

through Eq. 9 according to lA ¼ l0
A þ DGþ ð1� xAÞ oDG

oxA

(and similarly for the B component), where lA
0 is the

Fig. 6 ‘‘Bulk’’ contribution to the Gibbs free energy of nucleation as

a function of the composition variable nA
(0) (solid lines, left scale). The

computation refers to the formation of both a and b nuclei. In the

figure the curves Dg0,a(nA
(0)) and Dg0,b(nA

(0)) are labeled as ‘‘0 ? a’’

and ‘‘0 ? b’’, respectively. The molar free energy of alloy formation

(bDG � DG=kTÞ is also shown as dashed lines (right scale). The

boundaries of the immiscibility gap are located at nA
(0) = ±nA

(a) (in the

text nA
(a) : n and nA

(0) : n (0)). a The two dashed stripes denote the

composition intervals where thermally activated nucleation does

occur. Panels a, b, and c refer to nA
(a) = 0.4, nA

(a) = 0.3 and nA
(a) = 0.15,

respectively
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chemical potential of pure A which is independent of alloy

composition. Thus one obtains,

lAðnAÞ ¼ l0
A þ

1

2
� nA

� �2

xþ kT ln
1

2
þ nA

� �
ð11aÞ

and

lBðnAÞ ¼ l0
B þ

1

2
þ nA

� �2

xþ kT ln
1

2
� nA

� �
: ð11bÞ

Let us now move to the computation of the free energy

change for nucleation. According to the classical

nucleation theory, the free energy for nucleation is given

by the sum of ‘‘bulk’’ and ‘‘surface’’ terms. By considering

the nucleation of a-phase nuclei, the bulk contribution to

the Gibbs free energy, per atom, reads

Dg0;a ¼ x
ðaÞ
A lðaÞA � lð0ÞA

� �
þ 1� x

ðaÞ
A

� �
lðaÞB � lð0ÞB

� �h i

¼ 1

2
þ n

� �
lðaÞA � lð0ÞA

� �
þ 1

2
� n

� �
lðaÞB � lð0ÞB

� �� 	

ð12Þ

where the index ‘‘(0)’’ designates the metastable solid

solution, lðaÞA � lAðn
ðaÞ
A Þ ¼ lAðnÞ; l

ðaÞ
B ¼ lBðn

ðaÞ
A Þ ¼ lBðnÞ.

A similar expression is obtained for Dg0,b. By inserting

Eqs. 11 in Eq. 12 and using Eq. 10 to express x in terms of

composition, one ends up with

bDg0;aðn; nð0ÞÞ ¼
1

2
ln

1� 4n2

1� 4nð0Þ
2 þ n� 1

2n
n� nð0Þ
� �2

� �"

	 ln
1þ 2n
1� 2n

þ nln
1� 2nð0Þ

1þ 2nð0Þ

#
ð13Þ

and

bDg0;bðn; nð0ÞÞ ¼
�

1

2
ln

1� 4n2

1� 4nð0Þ
2 þ

�
n� 1

2n
nþ nð0Þ
� �2

�

	 ln
1þ 2n
1� 2n

þ nln
1þ 2nð0Þ

1� 2nð0Þ

	
ð14Þ

where n(0) : nA
(0) is the composition of the parent phase.

The behavior of these functions is shown as solid lines in

Fig. 6a–c for n : nA
(a) = 0.4, 0.3 and 0.15, respectively,

together with the curve bDG (dashed line). As anticipated,

the spinodal is defined by the two points of inflection of the

bDG curve that, in turn, are found to coincide with the

minima of Dg0,a and Dg0,b. Furthermore, Dg0,a and Dg0,b

are identically nil at the boundary of the metastable region,

i.e. at n(0) = ± n. Therefore, out of the spinodes the

nucleation of only one of the two phases is permitted, this

depending on the initial composition of the solid solution

(Fig. 6). To be specific, for nA,F \ n(0) \ n nucleation and

growth of the b-phase is allowed since Dg0,b \ 0 and

Dg0,a [ 0 in this interval of composition. On the contrary,

for -n\ n(0) \ -nA,F the inequalities Dg0,a\ 0 and Dg0,b

[ 0 hold, which entails nucleation and growth of the a-

phase. As far as the supersaturation is concerned, it is given

by ra ¼ x
ð0Þ
A
�x
ðbÞ
A

x
ðaÞ
A
�x
ðbÞ
A

¼ 1
2

1þ nð0Þ

n

� �
or rb ¼ x

ð0Þ
A
�x
ðaÞ
A

x
ðbÞ
A
�x
ðaÞ
A

¼ 1
2

1� nð0Þ

n

� �
and its maximum value, at a given n (i.e. at a given bx), is

equal to rmaxðnÞ ¼ 1
2

1� nA;F

n

� �
¼ 1

2
1� 1

2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4n

ln1þ2n
1�2n

r !
.

In the range 0 \ n\ 1/2, rmax is therefore lower than

limn!0 rmaxðnÞ ¼ 1
2
ð1� 3�1=2Þ ffi 0:21 as displayed in

Fig. 7. This computation shows that for the regular solution

model considered here, the nucleation process occurs for

r\ 0.21.

We are now in a position to evaluate the nucleation rate

on the basis of the classical nucleation theory. In this

approach, nucleus formation is thought to proceed by the

attachment of monomers according to the reaction chain:

. . .
!
 Mi þM1

!
 Miþ1 þM1

!
 . . . where M1 denotes the

monomer and Mi a cluster made up of i monomers. The

steady state nucleation rate, per unit volume of the

untransformed phase, is given by [35]

I ¼ K
Zn1e�bDG
 ; ð15Þ

where DG* is the free energy for critical nucleus formation, Z

the Zeldovich factor, n1 the concentration of monomers and

K* the rate constant of the process Mi
 þM1!K



Mi
þ1; i



being the size of the critical nucleus. In Eq. 15,

DG
 ¼ b
3


 �3 2
Dl

� �2

; b ¼ ð36p=q2
nÞ

1=3c, where qn and c are

the density and the surface energy of the nucleus,

respectively, and i*Dl is the bulk contribution to the free

energy of nucleation. It is worth noting that in the case of one-

component systems, application of Eq. 15 is straightforward.

On the other hand, in order to employ Eq. 15 to deal with

Fig. 7 Maximum value of the supersaturation as a function of nA
(a).

The nA
(a) quantity (0\nðaÞA \ 1

2
Þ characterizes the energetics of the

alloy through the bx(nA
(a)) function
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two-component systems, the concentration of the

‘‘monomer’’ has to be estimated. To this end, and with

reference to the nucleation of the a-phase, one formally

identifies the monomer with the M1 � A
x
ðaÞ
A

B
x
ðaÞ
B

unit.

Consequently, by denoting with N1 the number of atoms

available to be transferred into the a-phase, with N0 the total

number of atoms and with q0 the density of the alloy, one gets

n1 ¼ N1

N0
q0. On the other hand, since N1 is also equal to the

number of atoms transferred into the a-phase at the end of the

transformation, use of the lever rule eventually leads to the

relationship n1 = q0ra. In addition, K* = ma0S*cA
(0) where m

and a0 are the jump frequency and jump length of the atom,

respectively, S* the surface area of the critical nucleus, and

cA
(0) the concentration of the component in the parent-phase.

The steady state nucleation rate, Eq. 15, becomes

I ¼ q0ma0S
Zc
ð0Þ
A rae�bDG
 ; ð16Þ

with DG
 ¼ b
3


 �3 2
Dg0;a

� �2

; b ¼ ð36p=q2
aÞ

1=3c0;a, where qa

and c0,a are the density and the interfacial energy,

respectively. Besides, the Zeldovich factor is a function of

the free energy of nucleation according to Z ¼ 1
9DG


bb3

p

� �1=2

.

For the sake of simplicity in the following, the density

is taken to be the same for all phases and will be denoted

as q0. Notably, cA
(0) and b (and therefore DG*) are both

functions of supersaturation or, alternatively, of the frac-

tion of the transformed phase. Specifically, c
ð0Þ
A ¼ q0x

ð0Þ
A ¼

q0
1
2
þ nð0Þ

� �
¼ q0

1
2
þ nð2ra � 1Þ


 �
; which can be further

expressed in terms of the transformed volume through Eq. 3.

The nucleation rate is eventually given by

IðrÞ ¼ jq0mc
1=6 1

2
þ nð2r� 1Þ

� �
r exp �c= bDg0;a


 �2
h i

;

ð17Þ

where r � ra; c ¼ 16
3

p
ðbc0;aÞ3

q2
0

and j is a numerical factor of

order of unity (with a0 ffi q�1=3
0 Þ. The surface energy, c0,a,

can be estimated by resorting to the Born–Stern broken-

bond method by considering nearest neighbor interactions

[35]. By retaining in the x expansion only the contribution

of the first coordination shell, one gets

c0;a ¼
x

az1

ðn� nð0ÞÞ2; ð18Þ

where a is the area occupied by one atom in the interface. By

making use of Eq. 10, the c term is eventually estimated as

c ¼ 16

3
p

bx
z1

� �3

ðn� nð0ÞÞ6

¼ 2

3
p

1

z1n
ln

1þ 2n
1� 2n

� �3

ðn� nð0ÞÞ6:
ð19Þ

where a ffi q�2=3
0 was assumed.

Nucleation rates have been computed by means of Eqs.

17 and 19 for several values of the initial supersaturation

subjected to the constraint r0 \ rmax(n). The normalized

nucleation rate, I(r)/I(r0) versus X/X?, computed for

z1 = 6 and n = 0.4, has been displayed in Fig. 8 and

implies, according to Fig. 7, a maximum value of the

supersaturation of about 0.17. From Fig. 8 one appreciates

that the nucleation of all nuclei can be considered simul-

taneous the lower the supersaturation value. This behavior

can be better analyzed by plotting the full width at half

maximum (FWMH) of the normalized nucleation rate

versus the initial supersaturation, as displayed in the inset

of the same figure. The nucleation process can be assumed

to reach completion for a volumetric fraction of the

transformed phase of the order of 0.1–0.2.

It is worth noting, in passing, that the composition

variable here employed allows us to study various situa-

tions. In particular, for a given n the computation reported

above holds for several values of the critical temperature of

the alloy, Tc. In fact, from Eq. 10 it follows that Tc ¼
T 1

4n ln 1þ2n
1�2n and thus depends on temperature. In the limit

n ? 0 one gets T ? Tc and the phase separation does not

occur.

The thermodynamic factor

So far Fick’s law has been employed by considering the

diffusion coefficient to be independent of concentration. In

other words, the thermodynamic factor has been taken

equal to one. In this section, we briefly analyze the validity

of this assumption in the framework of the regular solution

Fig. 8 Steady state nucleation rate, according to the classical

nucleation theory, as a function of X/X? for z1 = 6, n = 0.4 and

several values of r0: 0.06, 0.1, 0.12, and 0.15. The FWHMs of the

normalized nucleation rates are displayed in the inset
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model discussed in the previous section, which allows for a

straightforward determination of the activity coefficient.

For component A, the generalized transport equation is

JA ¼ �bDA
olA

o ln cA
rcA and the thermodynamic factor is

estimated by means of Eq. 11a according to

b
olA

o ln cA
¼ 1� 2bxxAð1� xAÞ; ð20Þ

where xA ¼ cA

q0
is the mole fraction of the component. It

follows that Eq. 2a holds provided 2bxxAxB is much lower

than unity.

The plot of 2bxxAxB as a function of supersaturation is

displayed in Fig. 9 for various values of n in the range 0.1–

0.45. In these computations, the supersaturation is lower than

the rmax(n) function reported in Fig. 7. From Fig. 9 it stems

that in the low supersaturation regime the thermodynamic

factor can be taken equal to one provided n is sufficiently

large. Furthermore, although for small n the thermodynamic

factor is not negligible, it is found to depend weakly on

supersaturation and this validates the use of Fick’s law.

In the region of the phase diagram where nucleation is

thermally activated, the maximum value of 2bxxAxB is

obtained at the inflection points, namely at n(0) = ±nA,F,

according to 2bx 1
4
� n2

A;F

� �
¼ 1. This is the value reached

by the curves of Fig. 9 for r/rmax(n) = 1, where

rmaxðnÞ ¼ 1
2

1� nA;F

n

� �
.

Effect of the nucleus curvature on interface

composition

In this section, we study the effect of the curvature of the

nucleus on the composition of the interface. The solid

solution is thought to be regular and the formation of

a-nuclei is assumed. This analysis is useful in order to give

an assessment of the approximation employed in section

‘‘Simultaneous nucleation’’ regarding the Gibbs–Thomson

effect. To this aim, the excess free energy of the interface

has to be taken into account in the expression of the free

energy of the system,

G ¼ n
ðaÞ
A lðaÞA þ n

ðbÞ
A lðbÞA þ n

ðaÞ
B lðaÞB þ n

ðbÞ
B lðbÞB þ 4pR2

ac0;a;

ð21Þ

where n stands for the composition variable and the

chemical potentials are given by Eqs. 11a and 11b. To

simplify the notation in the following, c : c0,a and R : Ra

are used. From Eq. 21 one derives the equilibrium condition

between the two phases according to

lðaÞA þ
2ctðaÞ

A

R ¼ lðbÞA

lðaÞB þ
2ctðaÞB

R ¼ lðbÞB ;

8<
: ð22Þ

where tðaÞA and tðbÞA are the partial molar volumes of A and B

in the a-phase nucleus. Equation 22 is a system in the two

unknowns, xA
(a)(R) and xA

(b)(R), which are the two inde-

pendent variables of composition, both functions of R.

These two equations lead to the common tangent con-

struction in the Gibbs free energy diagram where

G
ðaÞðRÞ ¼ G

ðaÞð1Þ þ 2cV
ðaÞ

R ;V
ðaÞ

is the molar volume of the

a-phase and G
ðaÞð1Þ the free energy of the planar interface

[36]. A discussion on the application of the common tan-

gent approach to solid–solid system has been reported in

Ref. [36] and references therein.

In order to check the validity of the approximation

employed in the model kinetics, the system Eq. 22 is solved

by considering small deviations in the compositions from

the values proper of the planar interface, which are referred

to, in this section, as xA
(a)(?) and xA

(b)(?). These values are

in accord with the phase diagram and correspond to the

variables xA
(a) and xA

(b) defined in the previous sections

(Fig. 1b). Accordingly, one gets

lA x
ðaÞ
A ðRÞ

� �
ffi lA x

ðaÞ
A ð1Þ

� �
þ olA

oxA

� �
x
ðaÞ
A
ð1Þ

Dx
ðaÞ
A ð23aÞ

lA x
ðbÞ
A ðRÞ

� �
ffi lA x

ðbÞ
A ð1Þ

� �
þ olA

oxA

� �
x
ðbÞ
A
ð1Þ

Dx
ðbÞ
A ; ð23bÞ

where DxA
(a) and DxA

(b) are the deviations from the

compositions of the planar interface. The system then

becomes

olA

oxA

� �
x
ðaÞ
A
ð1Þ

Dx
ðaÞ
A þ

2ctðaÞ
A

R ffi olA

oxA

� �
x
ðbÞ
A
ð1Þ

Dx
ðbÞ
A

olB

oxA

� �
x
ðaÞ
A
ð1Þ

Dx
ðaÞ
A þ

2ctðaÞB

R ffi olB

oxA

� �
x
ðbÞ
A
ð1Þ

Dx
ðbÞ
A

8><
>: ð24Þ

where
olA

oxA

� �
¼ ð1� xAÞ o2DG

ox2
A

; olB

oxA

� �
¼ �xA

o2DG
ox2

A

and DG is

given by Eq. 9. By specifying t ¼ q�1
0 in Eq. 24, the solution

Fig. 9 Thermodynamic factor in the framework of the regular

solution model. Plot of the function 2bxxAxB as a function of

normalized supersaturation, r/rmax(n), for several values of n : nA
(a):

(a) n = 0.1, (b) n = 0.3, (c) n = 0.4, and (d) n = 0.45
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of the system can be expressed in terms of the quantity

n � nðaÞA ¼ x
ðaÞ
A ð1Þ � 1

2
defined above. The result reads,

Dx
ðaÞ
A ¼ Dx

ðbÞ
A ¼

bc 1� 4n2

 �

2q0Rn 2� bx 1� 4n2

 �� � ð25Þ

where, according to Eq. 10, bx is a function of n. It is worth

recalling that in this computation n refers to the equilibrium

composition, for a planar interface, of component A in the

a-phase, where n[ 0 has been assumed (Fig. 1b). The

supersaturation is eventually estimated as

w ¼ c
ð0Þ
A � c

ðbÞ
A ð1Þ � q0Dx

ðbÞ
A

c
ðaÞ
A ð1Þ � c

ðbÞ
A ð1Þ þ q0 Dx

ðaÞ
A � Dx

ðbÞ
A

� �

¼ r� Dx
ðbÞ
A

2n
;

ð26Þ

where xA
(a) - xA

(b) = 2n and c = q0x was used. In the limit

DxA
(b) � 2n, the supersaturation approaches r, which is the

value employed in section ‘‘Simultaneous nucleation’’.

Moreover, since DxA
(b) [ 0, the actual supersaturation is

always lower than that which applies for the planar inter-

face. It is worth noting that performing the computation

above in terms of the xB variable, the expected result

DxB
(a) = -DxA

(a) is obtained.

Equation 26 is the basic equation for dealing with the

effect of the nucleus curvature on the kinetics of the phase

separation. In fact, with reference to the system of rate

equations, Eqs. 4a–c, the nucleus curvature entails a change

in the rate equation for the supersaturation (Eq. 4b). As

reported in the Appendix, this last equation has to be recal-

culated, by using Eq. 26, and by taking into account the time

dependence of the nucleus radius, R(t), in the DxA
(b) expres-

sion. The uncertainty arising from the assumption of planar

interface can be analyzed, quantitatively, by comparing the

w and r quantities. By making use of Eq. 26, the expression

of the volumetric fraction of the transformed phase, namely

XðtÞ ¼ c
ð0Þ
A
ðt¼ 0Þ�c

ð0Þ
A
ðtÞ

c
ðaÞ
A
ðRðtÞÞ�c

ð0Þ
A
ðtÞ

, can be recast in the form

X ¼ r0 �
Dx
ðbÞ
A

2n
� w

 !
1

1� w
; ð27Þ

where r0 � rð0Þ ¼ x
ð0Þ
A
ðt¼ 0Þ�x

ðbÞ
A
ð1Þ

x
ðaÞ
A
ð1Þ�x

ðaÞ
A
ð1Þ

is the initial

supersaturation for a planar interface. By specifying

Eq. 25 in Eq. 27 and employing the KJMA equation for

the simultaneous nucleation case (Eq. 4c), one eventually

gets the supersaturation as a function of X

w ¼ r0 �
bca2

0ð1� 4n2Þx1=3
N

4n2xq
� X

 !
1

1� X
; ð28Þ

to be compared with the supersaturation in the case of a

planar interface, r ¼ r0�X
1�X . In Eq. 28 x ¼ 2� bxð1� 4n2Þ;

q ¼ 3
4p ln 1

1�X


 �1=3
; xN ¼ a0

d

� �3

and a0 = q0
-1/3. Moreover,

Eqs. 25 and 26 show that the nucleus size has to be

sufficiently large to ensure w[ 0. This condition is satisfied

provided 2nr[DxA
(b), that is

bcð1�4n2Þ
4q0rn2xR

\1. Since this

inequality also has to be verified for the smallest values of

R, i.e. the critical radius R
 ¼ 2c
q0 Dg0;aj j, one ends up with

b Dg0;a

�� ��ð1� 4n2Þ
8r0xn2

\1: ð29Þ

This inequality is found to be fulfilled for r0 = rmax(n) in

the whole n domain. The xN value is also subjected to a

constraint. In fact, the volume occupied by critical clusters

(at the beginning of the transition) has to be much lower

than the volume of the nuclei at the end of the transfor-

mation, and this implies xN � r0/i*.

The behavior of the supersaturation as a function of

transformed volume (Eq. 28) has been shown in Fig. 10A

and B for several values of the nucleation densities at

n = 0.4, n = 0.25 and r0 = rmax(n). In fact, the inequality

above is fulfilled for xN much lower than 10-3 and 10-4 for

n = 0.4 and n = 0.25, respectively. In these computations,

the maximum value of the surface free energy has been

used, and is that obtained for n(0) = -n. Comparison with

the supersaturation of planar interface, also shown in the

same panel, indicates that the effect of nucleus curvature

becomes more important the larger the nucleation density,

the smaller the fraction of transformed phase and the

smaller the bx = 2Tc/T quantity. Besides, the finite cur-

vature of the nucleus entails a decrease of supersaturation

when compared to that which applies for a planar interface,

in the whole range of transformed volume. This affects the

value of the volumetric fraction at the end of the transition,

i.e. for w ? 0, that is now lower than r0 (Fig. 10).

The characteristic length, g, has also been investigated

by taking into account the impact of the nucleus curvature

on interface composition. The details of the computation

are reported in the Appendix. It is found that the behavior

of the ratio q/g with the volumetric fraction is very similar

to that obtained through Eq. 6 for planar interface. The

computation shows that the relative deviation of q/g from

Eq. 6 is of the order of a few percent in the whole range of

the transformed volume (Fig. 11). Finally, we report on the

kinetics of the transformed volume by considering the

Gibbs–Thomson effect. For this purpose, knowledge of the

q/g function is required, for it enters the rate equation for

the volumetric fraction Eq. A10. This equation has been

numerically integrated for the same values of the param-

eters as in Fig. 11 and the results have been displayed in

Fig. 12. As it appears, consideration of the Gibbs–Thom-

son effect leads to a slowing down of the kinetics, to an

extent that depends on nucleus density, and to a decrease of
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the final value of the transformed volume. Finally, it is

worth recalling that these results are correct within the

linear approximation exploited in Eq. 24.

Conclusion

A model kinetics has been presented for describing solid–

solid phase transition, ruled by nucleation and growth

processes, in binary alloys. The model relies on a system of

mean field rate equations where the characteristic distance,

y, depends on nucleus radius and diffusion length, both

functions of time. The time dependence of the supersatu-

ration is related to the diffusion length of the atoms. In the

case of simultaneous nucleation, the duration of the

transformation exhibits a power dependence on the diffu-

sion coefficient, nucleation density, and initial

supersaturation. The analysis of the nucleation process,

based on the regular solution approach, shows that the

nucleation can be considered, approximately, as simulta-

neous. Under these circumstances, Ham’s equation is well

verified. In addition, for low values of either n or r, Fick’s

law is suitable for describing the growth process. The

impact of the nucleus curvature on interface composition

has also been analyzed. It is found that this effect is rele-

vant in the case of high nucleation density and low values

of the transformed volume. Moreover, the Gibbs–Thomson

effect implies a decrease of the transformed volume at the

end of the phase separation when compared to the one

computed for a planar interface.

Fig. 10 Effect of nucleus curvature on interface composition. The

supersaturation is shown as a function of transformed volume for

n = 0.4 and n = 0.25 in A and B, respectively, and for several values

of the nucleation density. In the abscissa, the fraction of transformed

volume is normalized to X? = r0 = rmax(n). A xN = 10-4 (curve a),

xN = 10-5 (curve b), and xN = 10-6 (curve c). B xN = 10-5 (curve a)

and xN = 10-6 (curve b). In curve (a) of B, the computation holds for

volume fraction greater than X*/r0 % 0.05. The supersaturation in

the case of planar interface is also displayed as dashed line

Fig. 11 Relative variation of q/g from the value obtained neglecting

the Gibbs–Thomson effect (Eq. 6). The computation has been

performed for n = 0.4 and r0 = rmax(n). (a) xN = 10-5 and (b)

xN = 10-6

Fig. 12 Kinetics of the transformed volume by considering the effect

of nucleus curvature on interface composition. As in Fig. 11

computations refer to the case n = 0.4 and r0 = rmax(n). (Dashed
line) xN = 10-5; (long dashed line) xN = 10-6. The kinetics computed

in the limit of planar interface is also reported as full line
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Appendix

This appendix is devoted to computing the rate equations

for both supersaturation (w) and fraction of transformed

volume (X), by taking into account the Gibbs–Thomson

effect discussed in section ‘‘Effect of the nucleus curvature

on interface composition’’. From the definition w ¼ c
ð0Þ
A
�c
ðbÞ
A

c
ðaÞ
A
�c
ðbÞ
A

one obtains

c
ð0Þ
A ¼ q0ð2nwþ x

ðbÞ
A ð1Þ þ Dx

ðbÞ
A Þ; ðA1Þ

where Eq. 25 was used. Also, the rate equation for cA
(0)

reads

dc
ð0Þ
A

ds
¼ � 1

g2
c
ð0Þ
A � c

ðbÞ
A

� �
¼ � 2q0nw

g2
: ðA2Þ

By equating the time derivative of Eq. A1 to Eq. A2, the

changing rate of the supersaturation is obtained according

to

dw
ds
¼ � w

g2
þ Dx

ðbÞ
A

2n
d ln q

ds
; ðA3Þ

where
d ln Dx

ðbÞ
A

ds ¼ � d ln q
ds was employed (Eq. 25). Equation

A3, together with Eq. 4a, i.e. dq
ds ¼ w 1

qþ 1
g

� �
, allows one to

evaluate the characteristic length. In fact, the equalities

hold,

dq
dw
¼

dq
ds
dw
ds

¼
w 1

qþ 1
g

� �
� w

g2 þ K0

2nq
d ln q

ds

; ðA4Þ

where K0 = DxA
(b) q. On the other hand, the derivative of the

KJMA formula, q ¼ 3
4p ln 1

1�X


 �1=3
, is

dq
dw
¼ 1

4pq2

1

ð1� XÞ
dw
dX

� ��1

; ðA5Þ

where, according to Eq. 28,

w ¼ r0 �
K0

2nq
� X

� �
1

1� X
: ðA6Þ

The equality between Eqs. A4 and A5 gives

w
1

q
þ1

g

� �
¼ � w

g2
þ K0

2nq2
w

1

q
þ1

g

� �� 	
1

4pq2ð1�XÞ
dw
dX

� ��1

;

ðA7Þ

that eventually leads to the following second order

equation for g(X):

g�2 � vðg�1 þ q�1Þ ¼ 0; ðA8Þ

where v ¼ 4pq2 1�r0

1�X


 �
� K0

2nð1�XÞ
X
q2 � 4pq
� �

. In the limit of

planar interface K0 = 0 and the solution of Eq. A8 reduces

to Eq. 6 with X ¼ r0�r
1�r .

The rate equation for X(s) is obtained by equating the

growth rate of the nucleus, as given by the KJMA kinetics,

to Eq. 4a. Specifically,

dq
ds
¼ 4pq2ð1� XÞ
� ��1dX

ds
¼ w

q
1þ q

g

� �
ðA9Þ

which leads to

dX

ds
¼ r0 �

K0

2nq
� X

� �
1þ q

g

� �
4pq; ðA10Þ

where the w(X) expression was used (Eq. A6). In fact, the

right-hand side member of Eq. A10 is a function of X since

q(X) is given by the KJMA formula and g(X) by solving

Eq. A8.

References

1. Kolmogorov AN (1937) Bull Acad Sci URSS (Cl Sci Math Nat)

3:355

2. Johnson WA, Mehl RF (1939) Trans Am Inst Min Metall Pet Eng

135:416

3. Avrami M (1939) J Chem Phys 7:1103

4. Avrami M (1940) J Chem Phys 8:212

5. Zener C (1949) J Appl Phys 21:950

6. Hermann H, Mattern N, Roth S, Uebele P (1997) Phys Rev B

56:13888

7. Svoboda J, Fischer FD, Fratzl P, Gamsjäger E, Simha NK (2001)
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